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I. Introduction 

Th is  i s  t h e  second year of  t h e  JPL - sponsored Mathematics C l i n i c  a t  C G S  

concerned w i t h  t h e  metal-oxide-semiconductor-field-effect-transistor (MOSFET) 

i n  a d d i t i o n  t o  t h e  1984 summer p r o j e c t .  The p r i m a r y  f o c u s  o f  l a s t  y e a r ' s  

C l i n i c  was t o  o b t a i n  v a l u e s  o f  v a r i o u s  d e v i c e  p a r a m e t e r  c o n s t a n t s  used i n  

one-dimensional (1-D) c u r r e n t  models f r o m  d a t a  s u p p l  i e d  b y  JPL ( " p a r a m e t e r  

I \ 

e x t r a c t i o n " ) ,  and so t h e  work was numerical i n  na ture .  

The g o a l  o f  t h i s  y e a r ' s  MOSFET c l i n i c  was t o  d e l i v e r  t o  J P L  a 

m a t h e m a t i c a l  model  o f  t h e  d e v i c e  d y n a m i c s  f r o m  w h i c h  a n  a c c u r a t e  a n d  

c o m p u t a t i o n a l l y  e f f i c i e n t  d r a i n  c u r r e n t  e x p r e s s i o n  c o u l d  be d e r i v e d  f o r  

subsequent parameter e x t r a c t i o n  purposes. The i n i t i a l  p l a n  was t o  o b t a i n  a 

s imp le  2-D model. However, a c a r e f u l  study o f  s e v e r a l  1 - D  models  ( s e e  [ 2 ] ,  

[3], [4] ,  [7] ,  [ l l ] )  revea led  many weak po in ts  i n  t h e i r  d e r i v a t i o n .  Moreover  

no one o f  them i n c l u d e d  an a n a l y s i s  o f  t h e  s o u r c e  a n d  d r a i n  r e g i o n s .  

Consequently t h e  team d e c i d e d  t o  l o o k  f o r  a more " a c c e p t a b l e "  1 - D  model,  

namely one whose d e r i v a t i o n  d i d  n o t  i n c l u d e  p r o c e d u r e s  and a p p r o x i m a t i o n s  

which we c o u l d  n o t  j u s t i f y ,  and i n  wh ich  t h e  r o l e  o f  t h e  s o u r c e  and d r a i n  

r e g i o n s  wou ld  be i n c o r p o r a t e d .  A t  t h e  same t i m e  we wanted t o  p r o v i d e  a 

c o m p a r i s o n  o f  t h e  1 - D  mode ls  p r e v i o u s l y  m e n t i o n e d  t o g e t h e r  w i t h  some 

e x p l a n a t i o n  o f  t h e i r  f a i l u r e  t o  p r o v i d e  accurate d r a i n  c u r r e n t  va lues a t  V G s  

S 2 and VBs s -3 (phenomena t h a t  w e r e  detected b y  l a s t  y e a r ' s  c l i n i c ) .  We 

f e e l  t h a t  a l l  these g o a l s  have been achieved. 

The 1 - D  m o d e l  p r o v i d e d  i n  3 .4  i s  m a t h e m a t i c a l l y  s o u n d  a n d  

s a t i s f a c t o r y .  It a l l o w s  t h e  source and d ra in  t o  opera te  i n  d i f f e r e n t  regimes; 

i t  i s  n o t  based on a ques t i onab le  d e r i v a t i o n  o f  t h e  d e p t h  o f  t h e  d e p l e t i o n  

l a y e r  and i t  i n c l u d e s  t h e  c o n t r i b u t i o n  o f  c u r r e n t  f rom t h e  p inched-o f f  p a r t  o f  

t h e  dev ice,  a f e a t u r e  n o t  seen i n  any o f  the p rev ious  models. 
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The ana lys i s  o f  source  and d r a i n  r eg ions  o f  4 . 2 ,  4.3,  a l though n o t  

e n t i r e l y  or ig ina l  i s  assembled here fo r  the f i r s t  time. T h e  r e s i s t a n c e s  R S  
and RD of the source and drain r e g i o n s  a r e  e s t i m a t e d  and used in 4 . 4  t o  

evaluate the poten t ia l s  Qso and QsL a t  t h e  sou rce  a n d  d r a i n  end of t h e  

channel respect ively:  

Qs0 = RSI 

VDs - QsL = RDI . 
I 

I There a r e  r easonab le  doubts  t h a t  RSI and R D I  may be r e l a t e d  t o  t h e  
I 

I quasi-Fermi level fo r  e lec t rons  a t  the source and a t  t h e  d r a i n  more than t o  

Qso and QSL . Future invest igat ion i s  needed t o  decide t h e i r  proper  p l ace  

i n  the  current  expression. 

The qua l i t a t ive  and quant i ta t ive  comparison of 5.1 - 5.5 wil l  p rovide  J P L  

w i t h  a useful quick-reference a n a l y s i s  o f  t h e  most c e l e b r a t e d  long-channel 

models, from the Pao-Sah double i n t e g r a l  formula t o  t h e  Brews [ 2 ] ,  [3] and 

Wiele [ l l ]  closed-form current expression. No extensive i n t r o d u c t i o n  t o  these 

previous models wil l  be made here; reference wil l  be made t o  t h e  1984 summer 

report  [5] b y  Morris-Everson and t o  the comprehensive book by  Sze [ l o ] .  

We conclude w i t h  the  l i s t  of symbols and notat ions (Appendix 1 )  used i n  

t h e  r e p o r t  and a comparat ive l i s t  o f  them (Appendix 2 )  a s  used b y  t h e  

referenced authors.  
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11. CHANNEL MODELLING 

2.1 Charge Distribution 
\ 

Estimation of the number of electrons in the inversion layer at any 

point along the channel is essential to an accurate evaluation of the current 

at that point. The number may be given by the statistical mechanical distri- 

bution dependent upon potential and thermal energy. One assumes the Fermi- 

level to lie somewhere within the forbidden region, and that there will 

be few enough conduction electrons that the Boltzman approximation to the 

Fermi-distribution may be used. 

mass 'action to obtain that the product of free carriers will be a constant, 

dependent only upon temperature. Tha t  is, 

Within the bulk one applies the law of 

2 
n p  = "i * 

2.1.1 

Assuming that for p-type material the number of positive ion impurities 

is much greater than negative impurities, NA >> ND, we approximate 

2.1.2 

and 

2.1.3 NDNA = n 2 i 

Here NA and ND are estimated concentrations. In formulating distributions 

for free holes and electrons, we assume that for a p-type semiconductor, 

the holes (being the majority carrier) feel no effects due to the local quasi- 

Fermi level, so that 

2.1.4 
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and 

B (+-VBS-+n 
n = n.e 2.1.5b Y 1 

I where a l l  p o t e n t i a l s  a re  i n  v o l t s .  

1 The i n c l u s i o n  o f  t h e  body-to-source p o t e n t i a l  i n  these d i s t r i b u t i o n s  

i s  t o  account f o r  t h e  f a c t  t h a t  t h e  Fermi- leve l  w i l l  be ad jus ted  downwards 

f o l l o w i n g  t h e  a p p l i c a t i o n  o f  negat ive  p o t e n t i a l s  t o  t h e  body. The i n c l u s i o n  
I 

I o f  a quasi-Fermi l e v e l  f o r  e l e c t r o n s  a l lows f o r  v a r i a t i o n  i n  e l e c t r o n  d i s t r i -  
I 
I 

I 
b u t i o n  a long the  channel, such t h a t  t h e  r e l a t i v e  (and complementary) pe r -  

I centages o f  c u r r e n t  due t o  d r i f t  and d i f f u s i o n  may change. 

l e v e l  i s  assumed t o  l i e  w i t h i n  t h e  i n t e r v a l  

The quasi-Fermi 
I 

2.1.6 

The l e f t  hand s i d e  represents  t h e  va lue  o f  a t  t h e  source end of t h e  

channel, w h i l e  t h e  r i g h t  hand s i d e  represents  i t s  va lue  a t  t h e  d r a i n  end. 

Hence 

4, 

B($-o+ 
n = n.e a t  the source , 

1 

2.1.7 

B ( o-oF-VDS 1 
n = n.e a t  the d r a i n  . 

1 

T h i s  a l l ows  f o r  v a r i a t i o n  of t h e  channel p o t e n t i a l  dependent upon the  poten-  

t i a l  a p p l i e d  t o  t h e  d r a i n ,  VDs. The e l e c t r o n  concen t ra t i on  i s  assumed t o  

be n e g l i g i b l e  a t  any p o i n t  i n  the  channel when t h e  exponent i n  (2.1.5b) 



I becomes zero (see 3.4). For every y i [O,L], where L is the length o f  

I the channel, we obtain a value x(y) at which 9 = 9, + VBs. This value 

1 %  represents the depth of the inversion layer at least in certain regimes 

of operation (see 3.4 for additional details). 

2.2 Poisson's Eauation and Surface Potential 
I 

Using the charge distribution of 2.1 we can formulate a partial dif- 

ferential equation satisfied by the electric potential 0. Since we are 
I 

interested only in the stationary state,Maxwell's equations are reduced 

to the single Poisson's equation 

2.2.1 div(ESv$) = p 

t 
where i s  the semiconductor permittivity and p is the charge density. I 

I 

I 
1 In our case we have 

p = q(n-p + N i  - N,,) + 2.2.2 I 

+ where N A  and No are the ionized acceptors and donors respectively. Using 

(2.1.5a), (2.1.5b) and the assumption that charge neutrality must exist 

in the bulk of the device we obtain 

2.2.3 

where ni is the intrinsic carrier concentration. 

If we assume that is position independent (homogeneous material) 

we obtain from (2.2.1) and (2.2.3) 

qni 8($-$,-Vgs) -8 ($ -6  -v 8bF -8OF) 
A$ = - (e -e BS +e -e 

S 
E 

2.2.4 
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If t h e  v a r i a b l e s  x,y,z a re  used t o  denote t h e  depth, l e n g t h  and w i d t h  

of t h e  dev i ce  r e s p e c t i v e l y  we have t h a t  $ is independent o f  z and we 

o b t a i n  

2.2.5 

We now assume t h a t  t h e  h o r i z o n t a l  component o f  t h e  e l e c t r i c  f i e l d  changes 

much more s l o w l y  than i t s  v e r t i c a l  component, which i m p l i e s  

2.2.6 23 >> 5 
ax ay 

2 

a t  any p o i n t  of t h e  channel. 

approx imat ion)  enables us t o  w r i t e  

T h i s  assumption ( c a l l e d  t h e  gradual  channel 

2.2.7 

'(&k]*) = 2 * 2 Thus dx dx2 ' 
T h i s  can be i n t e g r a t e d  s imp ly  by n o t i n g  t h a t  dx  dx 

2.2.8 

Our boundary c o n d i t i o n s  a re  t h a t  0 -f VBs and d$/dx .+ 0 as x -f w .  
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m p l i f y i n g  we a r r i v e  a t  

2.2.9 

where t h e  dependence on OF and VBs i s  i m p l i c i t .  A lso,  phys c a l  cons idera-  

t i o n s  n e c e s s i t a t e  t a k i n g  t h e  nega t i ve  square r o o t  as can be seen by t h e  l o c a t i o n  

o f  d$/dx i n  F igu re (2 .2 .1 ) .  A t  t h e  sur face x = 0 and $ = 0,. Therefore 

t h e  e l e c t r i c  f i e l d  a t  t h e  su r face  i s  a f u n c t i o n  o f  4,. Thus 

2qni 3 *I = -[-] F(#s,$n) .  It i s  now p o s s i b l e  t o  e s t a b l i s h  an i m p l i c i t  
dx x=o PES 

r e l a t i o n  f o r  t h e  su r face  p o t e n t i a l  

e l e c t r i c  displacement i n  a r e g i o n  t o  the charge enclosed i n  t h a t  reg ion :  

4,. Gauss' Law equates t h e  change i n  

5= 
E E n' dA = c qi. However, we assume t h e r e  t o  be no charge present  i n  

t h e  ox ide  l a y e r  so t h e  f i e l d  w i l l  be constant f rom gate  t o  sur face .  The 

e l e c t r i c  displacement o f  t h e  ox ide  layer ,  Do,, can be c a l c u l a t e d  r a t h e r  

s imp ly  and equated w i t h  t h e  e l e c t r i c  displacement o f  t h e  body, bbody. 

f e r r i n g  t o  F igu re  (2.2.1)  we see t h a t  ( f o r  x-components) 

Re- 

There fore  we may equate t h e  two displacements 

( 2qni Es - 
1 E 

and a = - (  1' . 
- ox 

Cox - - where we have taken 
cox 
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FIGURE 2.2.1 

Top shows t h e  graph o f  E @  a g a i n s t  x; the f i g u r e  below shows a MOSFET side-on 
u s i n g  t h e  same x,y axes. 
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Finally os is defined by the implicit expression 

2.2.10 
% 

where 

2.2.11 F(Os,On) = 

To obtain values for the source end of the channel we use the conditions: 

os - - os0 and 0, = oF - VBs. Similarly, for the drain end of the channel 

we use 9, = oSL and 9, = oF - VBs + VDs. Equation (2.2.11) is the Pao-Sah 

(see 2.4) exact one-dimensional expression for surface potential which can 

be used to evaluate the potentials at the source and drain ends of the channel 

by appropriate choice of 9,. 

The models of Brews and Van de Wiele presented in the next chapter use 

different forms of (2.2.11) to obtain $so and oSL. We shall now describe 

their approach and we postpone to Chapter 5 a comparative numerical study 

of the results obtained. 

.Brews'computation of oso and oSL 

In his derivation of surface potential Brews assumes the carrier densi- 

ties (2.1.5a) and (2.1.5b). The surface potential expression itself is 

derived by equating the space charge densities obtained through Gauss' Law 

with the integral of a simplified Poisson's equation (see [3], pg. 19, see 

also pg. 8). That is 
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\ 2.2.13 

Equati ng yi  e l  d s  

2.2.14 

-Wn 
Since a t  i t s  l a r g e s t  value,  e < << 1, i t  has been neglected. 

Comparing (2.2.14) with (2.2.11) we see  t h a t  while the expressions a r e  obviously 

s imi la r  t he re  a r e  terms l e f t  o u t .  These absent terms a r e  a d i r e c t  r e s u l t  

of the  way Brews takes  Poisson 's  equation a s  d2$/dx = q /ES  ( n + N A ) ,  which 

considers only the  e f f e c t s  of acceptor dopant ions and e lec t rons  ( see  [SI, 

pg.  5 ) .  Accordingly, we f ind  the  terms associated with the donor dopant 

i o n s  and the  hole densi ty  t o  be missinq i n  (2 .2 .13) .  This does n o t  seem 

unreasonable considering t h e i r  e f f e c t ;  near the surface,  (p+ND)<( 10-6+10-6)<<1, whereas 

(n+NA) > (10 

of the  exact  (2.2.11).  

mation "when appropriate".  

2 

6 6 + 10 ) .  Formula (2.2.14) i s  c l e a r l y  just an approximation 

I t  wi l l  be seen i n  Chapter 5 t o  be an exce l len t  approxi- 

Van de Wiele computation of $so $sL 

The Van de Wiele model begins a l i t t l e  d i f f e r e n t l y  as  the c a r r i e r  d e n s i t i e s  

a r e  defined by the  following: 

2.2.16 
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we f i n d  P@F With  t h e  r e l a t i o n  NA = n.e 
1 

To Van de Wiele,  V(y)  - VBs accounts f o r  t h e  d i f f e r e n c e  between t h e  h o l e  

and e l e c t r o n  quasi-Fermi l e v e l s  ( [ l l ] ,  pg. 991).  I n  o t h e r  words, V(y)  - 
VBs - - 4, - @F. S u b s t i t u t i n g  t h i s  we f i n d  t h e  d i s t r i b u t i o n s  t o  correspond 

p r e c i s e l y  t o  our  p r e v i o u s l y  d e r i v e d  ones ((2.1.5a) and (2.1.5b)) .  

express ion f o r  sur face p o t e n t i a l  i s  der ived  i n  the  same manner as Pao-Sah 

and Brews, namely equat ing  charge dens i t i es .  

C U ,  (6) and (3)): 

The genera l  

According t o  Van de Wie le (see 

(Poisson).  

Equat ing these y i e l d ?  h i s  express ion f o r  su r face  p o t e n t i a l :  

2.2.20 

'@OF 
We see t h a t  (2.2.20) d i f f e r s  f r o m  (2.2.11) o n l y  i n  t h e  exc lus ion  o f  t h e  e 

term. << 1 makes t h i s  reasonable and accounts The f a c t  t h a t  e - B @ F ~  

f o r  t h e  d iscrepancy.  Comparing (2.2.20) t o  (2.2.14) we see t h e  Van de Wiele 

model produces a c l o s e r  mathematical  correspondence t o  t h e  exac t  s o l u t i o n  

(2.2.11) than t h e  Brews model. However, f o r  t h e  purposes o f  approximate 
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c a l c u l a t i o n s ,  Van de Wie le suggests d i s t i n g u i s h i n g  between s t r o n g  and weak 

i n v e r s i o n  o f  t h e  su r face  (see [ll], pg. 993). St rong su r face  i n v e r s i o n  i s  

assoc ia ted  w i t h  t h e  j o i n t  c o n d i t i o n  VGs >> VT and 0, - OF + VBs < V1, 

where V1 

d e p l e t i o n  regimes occurs ( t h i s  can be considered a d r a i n  s a t u r a t i o n  p o t e n t i a l  ) ;  

i s  t h e  p o t e n t i a l  a t  which the  t r a n s i t i o n  between i n v e r s i o n  and 

and VT, t h e  t h r e s h o l d  p o t e n t i a l ,  i s  t he  p a r t i c u l a r  ga te  p o t e n t i a l  for which 

V1 

t o  produce an i n v e r s i o n  reg ime) .  For t h i s  case, charge d e n s i t y  i s  approximated 

becomes equal t o  t h e  source p o t e n t i a l  ( t h i s  i s  t h e  minimum gate p o t e n t i a l  

by: 

2.2.21 
B ( $ s - ~ n - v B s  i 

P = -a Cox[e (Poisson)  . 

Equat ing t h i s  w i th  t h e  express ion  f rom Gauss, (2.2.18), g i ves  an i m p l i c i t  

r e l a t i o n  f o r  su r face  p o t e n t i a l  i n  a s t r o n g l y  i n v e r t e d  dev ice:  

Weak i n v e r s i o n  occurs when VGs << VT o r  when VGs >> VT and $, - bF + 

'6s > "1. 
I n  t h i s  case charge d e n s i t y  i s  approximated by 

2.2.23 

Equat ing t h i s  w i t h  (2.2.18) g i ves  an i m p l i c i t  r e l a t i o n  f o r  su r face  p o t e n t i a l  

i n  a weakly i n v e r t e d  dev ice  

2.2.24 

Comparing (2.2.22) and (2.2.24) w i t h  (2.2.20) we n o t i c e  m iss ing  terms. 
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8(-$s+$F+vBS) -e-8$n 
Neg lec t i ng  e i n  (2.2.17) seems q u i t e  reasonable s i n c e  

they  a r e  < << 1. To understand how (2.2.22) and (2.2.24) a re  d e r i v e d  

we must cons ider  t h e  charge d e n s i t i e s .  

t h e  sum o f  t h e  f r e e  c a r r i e r  and dep le t i on  charge d e n s i t i e s ,  i . e . ,  

+ pD. pN can be considered t h e  e f f e c t  due t o  e l e c t r o n s  and pD t h e  e f f e c t  

due t o  ho les  and doping. 

by 

The t o t a l  space charge d e n s i t y  i s  

- 
'sic - 'N 

We are now approx imat ing t h e  t o t a l  space charge 

I n  a weakly i n v e r t e d  dev ice  we n e g l e c t  the e f f e c t  o f  f r e e  c a r r i e r s  which 

causes t h e  f i r s t  exponent ia l  t o  drop out ,  hence (2.2.23) and (2.2.24). I n  

a s t r o n g l y  i n v e r t e d  dev ice  we assume the  f r e e  c a r r i e r s  t o  be much g rea te r  

than t h e  ho les  and so t h e  second exponent ia l  drops ou t ,  thus  (2.2.21) and 

(2.2.22) .  

I n  t h e  Brews model, one formula,  (2.2.14), s u f f i c e s  f o r  c a l c u l a t i o n  

o f  su r face  p o t e n t i a l .  

whether t h e  su r face  i s  s t r o n g l y  o r  weakly i n v e r t e d  t o  choose t h e  approp r ia te  

express ion.  Formulae (2.2.22) and (2.2.24) a re  c l e a r l y  approx imat ions o f  

(2.2.11) b u t  t h e i r  accuracy w i l l  be seen t o  be poor r e l a t i v e  t o  Brews. 

I n  t h e  Van de Wiele model one must f i r s t  determine 

To determine t h e  su r face  p o t e n t i a l  a t  t h e  two ends o f  t h e  channel we 

must cons ider  t h e  change i n  t h e  quasi-Fermi l e v e l ,  I$,, based on i t s  p o s i t i o n .  

It i s  assumed t h a t  I$, a t  t h e  source end o f  channel and a t  t h e  source i t s e l f  

a r e  equal (see [3], pg. 20). Thus t o  c a l c u l a t e  su r face  p o t e n t i a l  a t  t h e  source 

end o f  t h e  channel we may rep lace  $,, by aF - VBs ([3], (4 .22) ) .  S i m i -  

l a r l y ,  an 4, a t  t h e  d r a i n  end equals  a t  t h e  d r a i n  i t s e l f  and we may r e p l a c e  



0, by OF - VBs + VDs ([3], ( 4 . 2 4 ) ) .  These subst i tut ions may be made i n  

a l l  three models. 

expressions for  surface potential a t  t h e  source and drain ends o f  the channel. 

To sum up then, the three models generate four similar 
\ 

A t  the source end (e, = $F - VBs): 

Pao-Sah 

2 . 2 . 2 6  

Brews 

Van de Wiele 

2 . 2 . 2 8  

A t  the  drain end (',, = qtF - VBs + V D s ) :  

Pao-Sah 

2 .2 .29  



i Van de Wile 

I 2 . 2 . 3 1  

2.3 Derivation of Jn-[x,y) 

The current in a MOSFET is the result of electron flow in the inversion 

layer, which i s  governed by the drain-to-source potential. This causes a 

drift towards the drain and a statistical diffusion due to heat energy. 

two effects are summed up as follows: 

These 
I 

2 . 3 . 2  

2 . 3 . 3  an = -go - 
jdiff. aY ' 

where D is the diffusion rate determined by the Einstein relation as 

2 . 3 . 4  

The current density due to drift i s  proportional to the product of mobility 

o f  electrons, number of electrons, and electric field along the channel. 



16 

Because no current leakage is assumed through the oxide and depletion layer 

except for negligible recombination effects, one may assume that the contri- 

bution' of the vertical field component to the current is negligible with 

respect to the contribution of the longitudinal component. 

The current density due to diffusion is proportional to the electron 

concentration gradient an/ay where the number n of electrons is deter- 

mined by the potential $, according to the Maxwell-Boltzman approximation 

to the Fermi-Dirac distribution. Here we allow 

2.3.5 

Hence 

2.3.6 jdiff. 

Equation (2.3.6) provides a much needed relation between the drift and 

diffusion components since both are now expressed in terms of the surface 

potential, 6 ,  and the electron quasi-Fermi level 

in concentration along the channel is accounted for by variations in surface 

potential, $s, and quasi-Fermi level, such that the electron distribution 

changes as one approaches the drain. Upon substitution of (2.3.6) and (2.3.2) 

into (2.3.1) we obtain 

bn. Note that the variation 

2.3.7 

where the integral is over the inversion layer. 
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Knowing the electron concentration, n, and the quasi-Fermi level gradient 

at any cross-section o f  the channel we can derive the current flow 

The principle of conservation 

a +  /ay n 
through the section by integrating (2.3.7). 

of charge will then allow us to eliminate the y-variable with an integration 

along the channel to obtain 

2.3.8 

It is worthwhile to note that since the total current flow at any cross-section 

o f  the channel is the same, the diffusion portion of the current increases 

as the drift component diminishes and vice versa. 

level for the electrons carries this information, by assuming that 

with y, while the Fermi level $F remains fairly constant. 

The use of quasi-Fermi 

4, changes 

2.4 The Pao-Sah Formula 

The Pao-Sah formula is an "exact" one-dimensional expression for the 

drain current based on (2.3.8). We call it "exact" in the sense that no 

other simplifications are introduced in addition to the gradual channel 

approximation. 

It is based upon the idea that at any point along the channel the current, 

I, is equal to the integral of the current density over the inversion layer: 

2.4.1 

Using the expression for current density, (2.3.7), one gets 

2.4.2 



18 

Since t h e  quasi-Fermi p o t e n t i a l  f o r  e l e c t r o n s  i s  assumed t o  be independent 

o f  x,  t h e  y-dependence may be removed by i n t e g r a t i n g  bo th  s ides  o f  (2.4.2) . along t h e  channel. Hence 

2.4.3a 

2.4.3b 

The l i m i t s  o f  t h e  f i r s t  i n t e g r a l  i n  (2.4.3b) a re  t h e  va lue  o f  on a t  t h e  

source and d r a i n  ends o f  t h e  channel, as p o s t u l a t e d  i n  (2.1.4). 

The i n n e r  i n t e g r a l  of (2 .4.3)  must now be p u t  i n  terms o f  on and 0. 

T h i s  i n t e g r a l  represents  t h e  charge present  i n  t h e  i n v e r s i o n  l a y e r  a t  an 

a r b i t r a r y  p o i n t  i n  t h e  channel ,  which i s  known as a f u n c t i o n  o f  p o t e n t i a l .  

Us ing t h e  Poisson equat ion  (2.2.7) ,  we may i n t e g r a t e  once, us ing  t h e  boundary 

c o n d i t i o n s  t h a t  I$ - VBs and d$/dx are equal t o  0 a t  x = 00.  T h i s  o b t a i n s  

t h e  f u n c t i o n  i n  equat ion  (2.2.11),  o r  

2.4.4 

Using t h i s f a c t ,  wemay express t h e  i n n e r  i n t e g r a l  o f  (2 .4.3)  as 

r O  n ( $ 9  $F, $& d$ 
2.4.5 

($1 

where (OF+VBS) and $s rep resen t  t h e  va lue  o f  4 a t  t h e  bottom and t o p  

o f  t h e  i n v e r s i o n  l a y e r ,  r e s p e c t i v e l y .  
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Combining (2.4.5) with ( 2 . 4 . 3 ) ,  we obtain the double integral formula 
B ( @-oF+VBS 1 

\ BLDWqpni ,@F-~BS+”D e d4dOn - 
L F( @ 9 6nY @F) 

2 .4 .6  I =  
@F-”BS 

This formulation is general, and valid in all regions o f  operation. 
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111. SIMPLIFIED LONG CHANNEL MODELS 

3.1 The Pierret-Shields Single Integral Formula 

The Pao-Sah double integral formula given in (2.4.6) is: h 

8 ( @ - @  

(3.1.1) I o  = d @d 

where @,(O) = QF - VBs 

and 

Note that in this section, @ is measured from the substrate. 

The 0 integral is essentially over the inversion layer. Since 0 is 

small in the depletion region outside of inversion, we can subtract the 

value of electron concentration and extend the integration through the whole 

depletion region. Thus (3.1.1) becomes 

0 = 0 

The key thing to realise now is that 
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T h u s  (3.1.2) w i l l  become an i n t e g r a l  w i t h  r e s p e c t  t o  F i n s t e a d  o f  @n . 

A t  t h i s  s t a g e ,  r e f e r r i n g  t o  F i g u r e  3 . 1 . 1 ,  we c h a n g e  t h e  o r d e r  o f  

i n t e g r a t i o n  t o  g i v e :  

where the c u r v e  i n  F igu re  3.1.1 i s  given p a r a m e t r i c a l l y  by: 

* 
For a given @,(y) , @,(y) is  s p e c i f i e d  by  the  Pao-Sah g a t e  v o l t a g e  r e l a t i o n  

(2.2.10) .  
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? 

: 

Hence we a r r i v e  a t :  

We can eva lua te  the  l a s t  term o f  (3.1.7) by r e f e r r i n g  t o  (2 .2 .10 ) .  

where VGB = V G s  - VBs. 
The l a s t  i n t e g r a l  thus becomes: 
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Thus we d e r i v e d  t h e  s i n g l e  i n t e g r a l  form o f  t h e  Pao-Sah c u r r e n t  expression:  

where +so and GSL a r e  calculated by 
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3.2 Brews Model 

The Brews charge-sheet model is derived with the same reasoning which 

leads to the double integral form mentioned in (2.4). The number of electrons 

in the inversion layer is estimated using the charge-sheet approximation 

and the current density at any point of the channel is found to be 
\ 

3.2.1 

where Qn is the charge o f  electrons/unit area and c $ ~  is the quasi-Fermi 

level for electrons. 

Qn and a@,,/ay. 

We now illustrate the method used by Brews for computing 

To do these calculations we need to know how charge is assumed to be 

distributed within the device; this is virtually the defining characteristic 

of any simplified one-dimensional model. 

The important thing to realize i n  Brews' derivation, is that he only 

considers two types of charge in the MOSFET; namely free electrons, n, and 

ionized acceptors, NA. 

The omission of ionized donor charge, ND, is acceptable, since it always 

occurs with NA in the form NA - ND. Since ND <c NA, the approximation 

NA - N = N is seen to be good. D -  A 

The omission of charge due to majority carriers (for n-channel devices 

these are holes, p) i s  more noteworthy. In fact, p is very small at the 

surface, and remains small up to some considerable depth--this is essentially 

the depletion region. Proceeding deeper into the device (x increasing) 

p tends asymptotically to NA, its value in the bulk. Thus there is no 

definite lower boundary to the depletion region. The approximation Brews 

uses is that p = 0 down to some depth x = w, where it attains its asymp- 



totic value. 

manner. 

below this there is solely the constant doping charge, NA, down to some depth 

w; beyond this, charge neutrality exists. 

Thus we can think of the charge being distributed in the following 

At the surface is an infinitely thin "charge sheet" of electrons; 
& 

I To find the current, we will first deal with Qn. Since direct evaluation I 

I , 
is very difficult Brews uses the equality 

3.2.2 

where Qs is the total charge/unit area and QD is the charge/unit area 

in the depletion layer due to ionized impurities. This is found to be 

3.2.3 

with w equal to the depth of the depletion region. At this point we encounter 

one of the most questionable steps o f  Brews' derivation. To obtain w he 

writes 

3.2.4 o < x < w  

which holds in the depletion region before inversion takes place. 

using the conditions q~ = VBs, dqI/dx = 0 at x = w we have 

Therefore, 

3.2.5 

Now it is assumed that (3.2.5) remains true after inversion and can be extended 

to find os,  the value of (0 at x = 0. This gives us 

3.2.6 
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Brews then states (but does not use) the result 

which he claims (without proof) comes from a ''more accurate derivation that 

includes majority carriers more carefully". 

(3.2.3) and (3.2.6) give us 

3.2.8 Q, = -Jz qNALB(@@, - BVBsIi . 

To complete the expression for Qn, we need to find Q,. Continuity 

of the field across the oxide-silicon interface gives us the following: 

3.2.9 

The left-hand side of (3.2.9) is given by 

3.2.10 

Finally, Gauss' Law gives us Qs to be 

Thus we have 

Now we turn to the calculation of d@,/dy. 

To find this, we relate 9, to 4, using once again the continuity 

of field at the surface ( x  = 0). The right-hand side of (3.2.9) is found 

by integrating the following initial value problem: 
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\ 3.2,13 
dx2 

I o  w < x  

- d$ = 0 and I$ = VBs a t  x = W .  
dx 

Eva lua t i on  a t  t h e  sur face ,  x = 0, $I = $s g ives :  

3.2.14 

Wi th (3.2.4) and (3.2.10),  (3.2.9) becomes 

3.2.15 

which, a f t e r  some man ipu la t i ons  gives 

w i t h  

J7 ES 
3.2.17 a = -  

'oxLB * 

Wi th  aon/ay obta ined f rom (3.2.15) and Q, g iven  by (3.2.12) Brews 

w r i t e s  (3.2.1) as 
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Rather than integrate this exactly with respect to y, Brews notes that 

the second bracketed term (the fraction) will be important only when the 

first becomes negligible. 

only near pinch-off. But, in this case we can write 

\ Since the first represents Qn, it will be small 

Then 

3.2.20 

Integrating (3.2.20) from 0 to L one obtains the source-to-drain 

current in terms of $so and OSL, the potentials at the source and drain 

end of the channel as given by (2.2.27) and (2.2.30) 

3.2.21 
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3 . 3  The Van de Wie le Model [113 

Van de Wie le uses a quasi-Fermi l eve l  f o r m u l a t i o n  f o r  c a r r i e r  d e n s i t i e s  

as i n  (2.1).  

From (2.2)  we see t h a t  h i s  general su r face  p o t e n t i a l  equat ion  i s  g i ven  

w i t h  

3 . 3 . 2  

D i f f e r e n t  

3 . 3 . 3  

Hence t h e  f o l l o w i n g  i s  a good approximat ion t o  (3.3.3): 

1 289N*Es 
where M = - = K 



30 

For t h e  c u r r e n t ,  t h e  same approach as (2 .3 )  i s  taken, b u t  w i t h  an 

e f f e c t i v e  m o b i l i t y  peff in t roduced:  

3.3.5 

k 

Hence 

3.3.6 

where $,,(O) = $F-VBs and $n(L) = 4F+VDs-VBs as i n  ( 2 . 2 ) .  

Now we use 

w i t h  

= E  field a t  t h e  surface) = -Cox(VGs - ($s) Qsc S 
3.3.8 

and 

3.3.9 

(3.3.9) i s  e q u i v a l e n t  t o  (3.2.8) i n  Brews' c a l c u l a t i o n s .  

Thus (3.3.6) becomes 

3.3.10 

By u s i n g  (3.3.4),  we f i n d  t h a t :  



1 .e. : 

3.3.12 

A.M.E.T. ( a f t e r  much elementary tedium) we f i n d :  

3.3.13 
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Where 

1 
= ?SO - ‘BS p 

- -  

1 aL 
B 4  

c = VGS - VBS - - + - 

ox L 

The part in the first parentheses i s  equivalent to (3.2.21) of Brews. 

Numerically, the second term in (3.3.13) i s  seen to be small compared to the 

first. If the approximation of [ll], eqn. (3.2) i s  used in (3.3.11), it is 

seen that only the first term appears i n  the final current equation. Hence 

the Brews charge sheet result is an approximation of (3.3.13). 

The derivation here of MOSFET current still depends crucially on the 
1 

result QD = - ( 4  - V  - l / p ) ’  as found in Brews (3.2.8). This is the step “ox s BS 
which we feel has not been sufficiently justified. 

The surface potential schemes presented in (2.3j are seen to be inaccu- 

rate in some bias regimes. This i s  not a problem, however, since we can use 

the full one-dimensional equation to find Oso and (see (2.3)). 

Thus we conclude that, with the exception of using the result (3.3.9) 

Q,, the Van de Wiele derivation of drain current is based on assumptions for 

and approximations which are nowhere too harsh. If the result (3.3.9) for 

QD were confirmed, then this model would be virtually optimal as a closed 

form of the one-dimensional Pao-Sah model. 
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3.4 The Clinic's Model 

In the following section, we will give the details of a model derived by 

the Clinic which gives the drain current in all regimes of operation. It has 

not been possible to do a complete test on this model since the approach was 

devised very late in the semester. Some preliminary numerics do, however, 

indicate that this is certainly a valid model. 

The strength of this model is in that, unlike previous models it does 

not use the same approximations over the whole range of operation o f  the 

device (a formidable task), or even, in fact over the whole device. 

We have divided t h e  device into r e g i o n s  A ,  B, a n d  C . A f u l l  

d e s c r i p t i o n  o f  t h e s e  r e g i o n s  i s  now g i v e n ,  t o g e t h e r  w i t h  v a r i o u s  

approximations valid therein. 

REGION A 

This is defined by 

4 > 4, + VBS + 4F 
S 

(3.4.1) 

In this region, the surface is strongly inverted. 

Let's l o o k  at the relative sizes of charge densities in the region. 

*4 F (3.4.3) NA = n i  e 

Since we make comparisons with NA, and No << NA,  we need not consider 

*D - 
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F A t  t h e  surface, n > ni e , and thus n/NA > 1. A l s o  we have p < ni - 
-Bon < ni e 8@F, and thus  p/NA < Hence n/NA-p = n/NA. 

e 

\ Now cons ider  a p o i n t  a t  depth xi beneath t h e  su r face  where @ f a l l s  t o  

t h e  va lue  VBs + cpn . A t  t h i s  p o i n t  p/NA = e and n/NA = e ; hence 

b o t h  a r e  l e s s  than ( S t i l l  we have n/NA-p = n /NA. )  T h i s  s h o u l d  now 

suggest t h e  bas is  o f  t h e  new approach. 

-mn 

Seeing how d r a m a t i c a l l y  n/NA-P f a l l s  o f f  between x=O and xi , we a r e  

j u s t i f i e d  i n  assuming t h a t  t h e  c o n t r i b u t i o n  o f  charge due t o  e l e c t r o n s  comes 

a lmost  e x c l u s i v e l y  f rom the  r e g i o n  0 s x < xi . 
The charge i n  t h e  dev i ce  below xi i s  g i v e n  b y  t h e  f i e l d  a t  xi , namely 

I n  t h e  f u n c t i o n  F , t h e  s i g n i f i c a n t  terms are:  

A t  x = xi , we have t h a t :  

and 

Thus a t  x = xi 

(3.4.5) 



I n  f a c t ,  n e g l e c t i n g  t h e  f i r s t  t e rm amounts t o  n e g l e c t i n g  t h e  c o n t r i b u t i o n  

due t o  e l e c t r o n s .  

Thus we have 
1 

Q,(A) ~ r:AES]' JBs,-1 y 

\ 

(3.4.6) 

t h e  charge beneath xi due t o  NA-p. We w i l l  r e f e r  t o  NA-p as d e p l e t i o n  

charge. 

F i n a l l y ,  we use t h e  f a c t  t h a t  t h e  p o t e n t i a l  drops o f f  r a p i d l y  as x 

inc reases  f rom zero. Th is  a l l o w s  us t o  neg lec t  t h e  c o n t r i b u t i o n  o f  d e p l e t i o n  

charge f rom t h e  r e g i o n  0 S x < xi . 
Hence Q, i s  a good approx imat ion  f o r  t h e  t o t a l  d e p l e t i o n  cha rge  i n  t h e  

dev ice,  and us ing  Gauss' Law we f i n d  Qn , t h e  charge due t o  f r e e  e lec t rons :  

(3.4.7) Qn(A) = Qsc - QD(A)  

Now we use Qsc = E d c ( x = O )  = - C o , ( V ~ ~ - @ s )  t o  o b t a i n  
S dx 

( 3 . 4 . 8 )  Q n ( A )  = rq>"] ' - Co,(VGs-$s) . 

We now make some d e f i n i t i o n s  t o  be used. th roughout  t h i s  chapter .  

D e f i n i t i o n  3.4.1 

A t  any p o i n t  a long  the  channel, t h e  r e g i o n  oSx<xi i s  d e f i n e d  t o  be  t h e  

i n v e r s i o n  l a y e r .  

D e f i n i t i o n  3.4.2 

A t  any p o i n t  a long  the  channel, x = xi i s  d e f i n e d  t o  be t h e  d e p t h  a t  

which a = VBs + an . 
Now l e t  us move on t o  

Region B 

(3.4.9) Qn < as - VBS 5 an + aF 
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Once a g a i n ,  we a p p r o x i m a t e  t h e  d e p l e t i o n  c h a r g e  b e n e a t h  xi  b y  

(3.4.6). 

Now, however ,  t h e  i n v e r s i o n  i s  n o t  as  s t r o n g .  To a c c o u n t  f o r  t h e  

p o s s i b i l i t y  o f  s i g n i f i c a n t  d e p l e t i o n  charge i n  t h e  i n v e r s i o n  l a y e r ,  we do t h e  

f o l l o w i n g  c a l c u l a t i o n .  

\ 

-B (@-vBs) 'B@F 
< 

hence i f  we can f i n d  We s t i l l  have p/NA = e < e  

xi ,then t h e  d e p l e t i o n  charge i n  t h e  i n v e r s i o n  l a y e r  i s  j u s t  -qNAXi . 

(3.4.10) 

(3.4.11) 

The s i g n i f i c a n t  terms o f  F are, once again:  

For  Qn+V <Q < as 5 on + aF +VBs we f i n d  t h a t :  B S  



b 
I f  we r e t a i n  o n l y  t h e  t h i r d  te rm,  t h e n  we f i n d  t h a t  i n  t h e  w o r s t  

p o s s i b l e  case (an = GF-VBS) and a t  t h e  worst end o f  t h e  i n t e g r a l ,  we have: 

1 - 
F(approx.) F ( C o r r e c t )  L. o.04 

1 A 

F ( C o r r e c t )  

Thus t h e  approx imat ion  o f  keeping o n l y  t e r m  #3 i s  n o t  a t  a l l  t o o  harsh. 

Hence t h e  e x t r a  d e p l e t i o n  charge i s :  

Thus i n  r e g i o n  B ,  we approximate Q, by: 

which i s  p r e c i s e l y  t h e  fo rm used i n  Brews and Van de r  Wiele. 

NOTE: We have de r i ved  t h i s  as a r e s u l t  o f  approx imat ions  which a r e  o n l y  

v a l i d  i n  r e g i o n  B . The approx imat ion  f o r  xi f a i l s  t o t a l l y  i n  r e g i o n  A. 

F i n a l l y  we look a t  



Region C 

(3.4.16) as - 'BS < @n 
This i s  the pinch-off region. The potential has fa l len below the  e f f e c t i v e  

\ 

Fermi-level , and thus the electron concentration i s  very small. 

In t h i s  case, i t  i s  possible t o  evaluate Qn d i rec t ly .  

( 3 . 4 . 1 7 )  Q,(C) = - 

* 
X 

I- 

L 
0 

The lower l i m i t  has been s e t  t o  
QF + V B s  b u t  t h i s  i s  s u b j e c t  t o  

debate. 

Referring to  (3.4.12) we s2e t h a t  since QF + VBs < 5 QS < an + V B s  , 
the  f i r s t  and second terms o f  F a re  both l e s s  than one, whereas the t h i r d  i s  

a t  l e a s t  10 . T h u s  we neglect a l l  the terms of F except the third.  6 

Then Qn becomes 

r 1 h 

I- 

This  approximation f o r  

+ F + ~ B S  

F i s  s t i l l  g o o d  i f  t h e  lower l i m i t  o f  

integration i s  extended t o  $QF + VBs. 

Under the subst i tut ion t2 = 8 ( @ - V B S ) - l ,  this  becomes: 



(3.4.19) 

Since -Gn < VBS-as, the equation for surface potential, 

becomes essentially independent of Gn , and thus as will be constant in the 

whole pinched-off region, and the numerical integration in (3.4.19) need 

only be done once. 

This concludes the discussion on Regions A,  B, and C, in which we found 

How do we find the current? Most generally, simple expressions for Q 

under a given set of applied voltages, parts of the device will be in each of 

the 3 regions A ,  B and C. 

n' 

The current is given by 

Since we have three different expressions for Qn , it will be necessary 

to split the integral into three. 

Consider a typical case where the source is in A , the drain in C , 

and a portion of the device in B . 
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The boundary between r e g i o n s  A and B i s  a t  o =4 * as  = a s  * . T h i s  i s  n n '  

d e f i n e d  t o  be t h e  p o i n t  a long  t h e  channel where Qs becomes equal t o  

Q + QF + VBS ( b y  ( 3 . 4 . 9 ) ) .  n * 
Thus t o  f i n d  an we must so l ve  t h e  i m p l i c i t  equa t ion  (2.2.7) 

The boundary between reg ions  6 and C i s  d e f i n e d  t o  be where 

Qs = On + VBs . 
p i n c h e d - o f f  r e g i o n  i s  cons tan t  and thus  equal t o  QSL . 
i s  a t  an - 

When t h e  d r a i n  i s  pinched o f f ,  t h e  s u r f a c e  p o t e n t i a l  i n  t h e  

Hence t h i s  b o u n d a r y  

- %L+BS 

Thus t h e  c u r r e n t  i s  g i ven  by: 

Now we do t h e  i n t e g r a l s .  

(3.4.24 ) 

t 

@n 
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To evaluate the second term of ( 3 . 4 . 2 5 ) ,  we use the approximation for 

- d @ n  used by Van der Wiele ( 3 . 3 . 4 )  . The integral  thus yields: 

The integral  for region B i s  precisely tha t  derived i n  Van der  Wiele 

( 3 . 3 . 1 3 ) :  

j** n '*; 
where 



r 1 / 2  1 

2 
t u en 

%L-u A - "GS 
"GS 

 so-^ B 1 /2- 

1 
= 'SO - '6s p - -  

(3 .4 .29)  

Finally, the pinch-off contribution is given by: 

Q,,(C)d+, - , e  

Thus (3.4.23) , along with (3.4.26, 28, 29) given the drain current 

when the source is in A and the drain pinched off (C). 

If the drain is not pinched off, then the B integral goes a l l  the way 
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t o  the  d r a i n ,  i . e .  t o  Q n ( L )  o r  QSL , and the C i n t e g r a l  i s  omit ted.  

S i m i l a r l y  i f  t h e  source  i s  i n  region 8, t h e n  t h e  B i n t e g r a l  s t a r t s  a t  

Q n ( O )  o r  as-,, and the A i n t e g r a l  i s  omitted. 

h 
Evident ly  this  means t h a t  a single cur ren t  expression i s  not  o b t a i n a b l e  

by this  approach. However, i n  each portion of  t h e  device ,  the equat ion g i v i n g  

t h e  c o n t r i b u t i o n  of  c u r r e n t  i s  simple.  

The c o n t r i b u t i o n  of c u r r e n t  from region B o f  t h e  d e v i c e ,  i s  p r e c i s e l y  

t h a t  of Van der Wiele. I t  should be noted t h a t  the approx ima t ion  we used t o  

obta in  this  result  breaks down when the  device i s  s t r o n g l y  i n v e r t e d  ( r e g i o n  

A ) .  I t  t h u s  seems t h a t  a 'best '  simple approx ima t ion  i n  r e g i o n  A wil l  n o t  

y i e l d  t h e  Van der  Wiele resul t .  I t  i s  our b e l i e f  t h a t  t h e  t rea tment  of region 

A i n  th i s  r e p o r t  should turn out  t o  be more accu ra t e ,  b u t  th i s  MUST be t e s t e d  

numerically.  A numerical t e s t i n g  of the various express ions  f o r  Qn will have 

t o  be a very ca re fu l  one, s i n c e  i n  s t rong  inversion t h e  boundary l a y e r  a t  x = O  

caused by t h e  h i g h  e l e c t r o n  c o n c e n t r a t i o n  t h e r e  w i l l  c r e a t e  problems f o r  a 

general  a lgor i thm.  

In c o n c l u s i o n ,  t he  s t rengths  o f  th i s  approach  a r e  t h a t  d i f f e r e n t  

approximations f o r  Qn a r e  used through the dev ice ,  depending on the  l eve l  of 

invers ion .  The inc lus ion  of a pinch-off term i s  a l s o  a much needed add i t ion .  

To f u l l y  comp e t e  th i s  model, one of t he  fol lowing i s  required. Ei ther  

t o  be accu ra t e  i n  r e g i o n  A ,  

x i  , t h e  i n v e r s i o n  

a numerical t e s t i n g  which shows t h e  value of  

o r  a method of  f i n d  ng an in t eg rab le  approx ima t ion  f o r  

l a y e r  t h i ckness .  

Qn 
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4.1. Purpose and P re l imina r i e s  

In the e x p l i c i t  formulae for d ra in  cu r ren t  used b y  p r e v i o u s  c l i n i c s  f o r  

parameter e x t r a c t i o n ,  t he  con t r ibu t ion  of source and d ra in  regions was l imi ted  

t o  the  inc lus ion  o f  Vs ( t he  po ten t i a l  a t  t he  source,  u s u a l l y  g rounded)  a n d  

VDs ( t h e  p o t e n t i a l  a t  t he  d r a i n )  i n  t h e  d e r i v a t i o n  o f  as0 and OsL'  t h e  

p o t e n t i a l s  a t  t h e  sou rce -end  and d r a i n - e n d  o f  t he  channel  r e s p e c t i v e l y .  

Theore t ica l  and e x p e r i m e n t a l  e v i d e n c e  s u g g e s t  t h a t  t h i s  a p p r o x i m a t i o n  i s  

a c c e p t a b l e  f o r  l ong  channe l  d e v i c e s ,  b u t  t h a t  i t  i s  one o f  the sources  of 

d i s a g r e e m e n t  between p r e d i c t e d  and measured c u r r e n t  i n  s m a l l  d e v i c e s ,  

p a r t i c u l a r l y  when t h e y  a r e  o p e r a t e d  a t  l o w  g a t e  v o l t a g e  ( V G s  $ 2 )  and 

negat ive s u b s t r a t e  b i a s  ( V s s  s - 2 ) .  

T h i s  y e a r ' s  c l i n i c  has cont r ibu ted  a more accura te  a n a l y s i s  of  source and 

dra in  reg ions  and i t  has a t  least  i n  pa r t  achieved the  goa l  o f  i n c o r p o r a t i n g  

i n  t h e  d ra in  c u r r e n t  e x p r e s s i o n  two q u a n t i t i e s  w h i c h  w e r e  p r e v i o u s l y  

neglected : 

- t h e  source and d ra in  doping p r o f i l e ;  

- the  r a t i o  between the  depth of t h e  channel and the  depth of t h e  s o u r c e  

and d ra in  reg ions .  

This resul t  was achieved by applying v a r i a t i o n a l  techniques t o  d e t e r m i n e  

the po ten t i a l  c lose  t o  the ohmic con tac t s  and methods of complex a n a l y s i s  t o  

obta in  the  so ca l l ed  crowding r e s i s t a n c e .  We s h a l l  p r e s e n t  h e r e  t h e  s o u r c e  

region a n a l y s i s .  The computations for the d r a i n  r e g i o n  a r e  s i m i l a r  and a r e  

t h e r e f o r e  omit ted.  
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Q 

F igu re  4.1.1 

F i g u r e  4.1.1 d i s p l a y s  t h e  two reg ions i n t o  which t h e  s o u r c e  i s  d i v i d e d .  

A t  t he  boundary'PQ between t h e  two reg ions t h e  f l o w  l i n e s  a r e  assumed t o  be  

pe rpend icu la r  t o  PQ. Region I i s  t h e  ohmic c o n t a c t  a r e a  o f  t h e  s o u r c e  and 

Region I1 i s  t h e  c rowd ing  a r e a .  We shall  p r e s e n t  an a n a l y s i s  o f  Reg ion  I 

f i r s t .  

4 . 2 .  Ohmic Contact  Region 

1 +x=O 

Figure  4.2 .1  

F i g u r e  4 .2 .1  shows t h e  p a r t i a l  d i f f e r e n t i a l  t t q u a t i o n  and t h e  

X 

b o u n d a r y  

c o n d i t i o n s  s a t i s f i e d  b y  t h e  p o t e n t i a l  Q i n  r e g i o n  I .  We see t h a t  a t  t h e  

ohmic c o n t a c t  [-r;O] we have a Robin type boundary ,  w h i l e  a t  t h e  i n s u l a t i n g  

boundar ies t h e  c o n d i t i o n s  a re  o f  Neumann type.  The problem suggests t h a t  r h e  

p o t e n t i a l  o minimizes t h e  func t i ona l  
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w i t h  X = O  o u t s i d e  o f  [-r, 01. 

A f i r s t  a t tempt  a t  m i n i m i z i n g  (4.3.1) can be  t r i e d  b y  assuming t h a t  CD 

i s  x- independent. We then o b t a i n  

to.  ' 

2 
(E+' + 19 )dy  = T(+) Y i (4.2.2) 

There fore ,  u s i n g  E u l e r ' s  equat ion ,  we obta in  

& 4  - 1 4  = 0 
YY 

o r  

+ = a y t b  i n  (0, + -) . 
in (--, 0) t 1 + = c y + d  

The cons tan ts  M,N,a,b,c.,d, need be selected so  t h a t  t h e  b o u n d a r y  c o n d i t i o n s  

a n d  t he  c o n t i n u i t y  requireI1;t:riEs a r e  s a t i s f i e d .  We obtain 

A cosh (d-$ Y+B) i n  (-r,O) 

i n  ( - 0 , O )  
( 4 . 2 . 4 )  + ( y )  = i n  (0, + -) 



The four c o n s t a n t s  A ,  8, b ,  d s a t i s f y  the l i n e a r  system. 

A cosh B = b 

@ A  s i n h  B = ks 

A cosh (-  p r  t B )  = d I E 

(4.2.5) 

1 f i  A s i n h  ( - n r  + B) = 0 

I 
The re fo re  

(4 .2 .6)  B = &  

A=- 
s i n h  

= k6 &- coth @ - r  - 

T h i s  approx IIna;ion is  o b v i o u s l y  n o t  o p t i m a l .  

A b e t t e r  approx ima t ion  t o  (0 can be o b t a i n e d  by assuming 

Then m and n s a t i s f y  t h e  systems o f  d i f f e r e n t i a l  e q u a t i o n s  

(4.2.8) J 
x n t - (mtn) 2 E 

1 4 ml' + - n t t  - 
3 E  

5 



for X p 0 ( i n  (-r,O)) , and 

for X = 0 ( o u t s i d e  (-r,O)). S e t t i n g  

u = . F y  * E  and s = ,/$-r- 

we o b t a i n  

= m + n  1 
p u u  + 3 “u 

n + m + n  - -  
(4.2.10) 

i n  ( - s ,  0) and 

l m u u  + - n  1 = o 
3 uu 

o u t s i d e  (-s,O) . Tdk ing  i n t o  account t h e  boundary c o n d i t i o n s  on 4 we have 
Y 

( 4 . 2 . 1 2 )  r 

- 
-J$ u 

n = B2e i 
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i n  (-- , - s ) .  

In (-s, 0) the system (4.2.10) gives the following algebraic equation 

f o r  n 

4 15 2 15 
E X  

(4.2.14) 6 - ( 6 + ~ x )  5 + - = O 

For XE < < 1 we have 

53 c\. 1 54 c\. -1 . 
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I 

-5 S - e s  e s  
Ale + A2e + A3e + A4e = C 2  

-Ale- 1 + -A2e es + 1A3e-s+ -A4e 2 = -C2-C3 1 
i 3  3 E X  E X  3 

- S  S - 8 s  -es  
@(Ale - A2e ) +A3e - A4e = eC2 

A c c o r d i n g l y  ( e =  E )  
(4.2.15) 

(n(u) * AleeU + A2e -Ou + A3eU + A4e-U 

m(u) = -- 1 AleeU - 1 A2e-O' - 2 (A3eU + A4e-U) . I 3 3 €1 

I I 

C o n t i n u i t y  o f  m , m , n , n a t  u = - s  and u = 0 g i v e s  t h e  f o l l o w i n g  

system o f  8 l i n e a r  equat ions  i n  

/A1 + A 2  + A3 + A 4  - 

I 
A1, A2, A 3 ,  A4,  B2,B3, C2, C3. 

- B2 
+ 1 A 2  + - 2 A 3  + - A 4  = 1 B2 - B3 

E X  E X  3 

1 -e(Ale - A2e ) +;.(A3e - A4e ) = 3Ec2 . es - S  S 2 
- e s  I: 

With a = 1 - - 2 
3 & A  

b = k6  6 we f i n d  t h a t  

2s 
B3 = aA4( l+e  ) b 

A 4  ='T 
a ( e  - 1 )  

2s 
A3 = A4e B2 = Al+AZ+A3+A4 

s ( 1 -  0) - es  e s  
A2 = -A4e C2 = Ale - A2e 

(u=O) 

(u=-s) 

S 
AI = A 4  ( 1 - e ) - e  2s C l + e L  C 3  = 2 a  A4e  

2e 



c3 = 2 k 6 h  e -S 

Consequent 1 y 

The neg lec ted  terms a r e  e x p o n e n t i a l l y  small. 

The c u r r e n t  o u t f l o w  i s  ( y  = 0) 
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(4.2 .I 8) 

( 4 . 2 . 1 7 )  1 @ydx = kSE 

k6 @xdy = k 6 E  - EG +. . . 

The cur ren t  inflow i s  ( x  = 0, ye[-r,O] ) 

I - r  
and we see t h a t  the two flows agree i n  f i r s t  approximation. 

The current  inflow i s  concentrated in a boundary layer near y = 0.  There 
a r e  two layers ,  whose heights a r e  & and whose widths a re  ,/: and E. respect ively 

( see  f igu re  4 .2 .3)  . T h e  s o l u t i o n  i s  independent  of  r and t h e  c u r r e n t  

en te r s  (or leaves a t  the d r a i n  e n d )  a t  the corner where t h e  ohmic c o n t a c t  i s  

c lose r  t o  the  channel. Hence we can assume t h a t  r = - . The c u r r e n t  l i n e s  

a r e  represented i n  f igure  ( 4 . 2 . 4 ) .  

We can now compute the res i s tance  between the e q u i p o t e n t i a l  l i n e  (@=O) 

Without g o i n g  i n t o  t he  

of the calculat ions we sha l l  simply mention t h a t  

AB (see f igure  4.2.1) and the equipotential  l i n e  PQ. 

technical d e t a i l s  (see [SI) 

the res i s tance  R1 i s  given by  

where urn i s  the s i l i c o n  conductivity,  pc  the  contact  r e s i s t i v i t y ,  and 

where the inner integral  i s  taken along each current  l i n e ,  $J = c ,  from 

the region PQ t o  the contact .  ( J ,  i s  the harmonic conjugate o f  the  

potent ia l  a.  ) 

We then have @ ( P Q )  - @(AB)  = RII and s ince  @ ( A B )  = 0 we obtain 
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Je 

Y 

F i g u r e  4 . 2 . 3  

Figure 4.2.4 
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(4.2.20) @(Pa) = RII 

4.3 The Crowdinq Resis tance 

As s t a t e d  p r e v i o u s l y ,  t h i s  s e c t i o n  w i l l  be concerned w i t h  t h e  a n a l y s i s  o f  

r e g i o n  I1  ( see  F i g u r e  4.2.2) f o r  t h e  p u r p o s e  o f  f i n d i n g  t h e  c r o w d i n g  

r e s i s t a n c e ,  namely t h e  r e s i s t a n c e  due t o  t he  d i s t o r t i o n  o f  t h e  c u r r e n t  l i n e s  

near  t h e  j u n c t i o n  where the  source meets t h e  channel o f  t h e  dev i ce  [9]. 

Here we w i l l  make use o f  t h e  Schwarz-Chr is to f fe l  t r a n s f o r m a t i o n ,  [ 12 ] ;  a 

conformal  mapping techn ique which maps the i n t e r i o r  o f  a polygon i n  one p l a n e  
t 

i n t o  t h e  upper h a l f  o f  a second p lane bounded b y  t h e  r e a l  a x i s  and an i n f i n i t e  

a rc ,  o r  v i c e  versa. 

+loo I Y  2-plane 

-is 1 
F i g u r e  4.3.1 

F i g u r e  4 . 3 . 1  shows t h e  g e o m e t r y  o f  t h e  r e g i o n  we a r e  i n t e r e s t e d  i n  

t r a n s f o r m i n g  w i t h  t h e  S c h w a r z - C h r i s t o f f e l  theorem;  F i g u r e  4.3.2,  i n s t e a d ,  

c o n t a i n s  t h e  p lane o f  t h e  s t r a i g h t  l i n e  i n t o  which the  boundary o f  F i g u r e  

4.3.1 has been opened ou t :  
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2 ,- p l a n  e 

i F i g u r e  4.3.2 , The d i f f e r e n t  i a l  equd t ion :  

i s  t h e  exp ress ion  g i v e n  b y  Schwarz and C h r i s t o f f e l  f o r  t h e  r d t i o  between t h e  

two i n f i n i t e s i m a l  v e c t o r s  d z  and d z l .  
I 

I i a  L e t t i n g  z1 = Re , t h e  two cons tan ts  c and a can be ob ta ined  through the  - 

e v a l u a t i o n  o f  the  f o l l o w i n g  i n t e g r a l  : 

and 
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2k o b t a i n e d  f r o m  E h and c = in S u b s t i t u t i n g  i n t o  (4.3.1) t h e  expressions a= 

(4.3.2) and (4.3.3) and i n t e g r a t i n g ,  we get: 

(4.3.4) 2 = - t h t a n  
n 

1 

S e t  W = U + i V  ( w i t h  U t h e  p o t e n t i a l  and V t h e  c u r r e n t  f l u x  v e c t o r )  and W = 

lnz l  o r  z1 = e' ; then c l e a r l y  F igure  4.3.1 t h e  c u r r e n t  l i n e s  f o l l o w  t h e  

r i g h t  and l e f t  b o u n d a r i e s  o f  t h e  s t r i p  f r o m  t o p  t o  b o t t o m  g i v i n g  a t o t a l  

c u r r e n t  I = - s be ing  t h e  r e s i s t i v i t y  o f  t h e  s t r i p .  iT 
I S '  

S u b s t i t u t i n g  z1 = ew and observ ing  t h a t  t h e  l i n e  o f  f l o w  a long t h e  y - a x i s  

i s  V = 2 , we f i n d :  71 

By equa t ing  (4.3.5) t o  zero, we o b t a i n  t h a t  t he  p o t e n t i a l  Vo a t  ( x = O ,  y=O) 

must be approx ima te l y  equal t o  Xa when a <<  1 . The va lue X = 0.308705435 

has been computed f o r  t h e  p a r a m e t e r  X u s i n g  Newton ' s  method t o  s o l v e  t h e  

equat ion :  

2 i  1 (X +l)z = - (4.3.6) tanh  
( X2+1 )+ 

I d e r i v e d  b y  equa t ing  (4 .3 .5 )  t o  zero w i th  Uo = l n i a .  

The exac t  va lue f o r  Uo i s  ob ta ined as an i nve rse  f u n c t i o n  b y  s e t t i n g  

x = [-] Then Uo = 1 l n  
T 

The s u b s t i t u t i o n  of  x i n t o  (4.3.5) w i t h  y=O p l u s  a l i t t l e  a l g e b r a  g i v e s  
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t h e  equat ion :  

t h a t  we s o l v e d  u s i n g  N e w t o n ' s  method w i t h  v a l u e s  f o r  

(0.01,0.034). 

a i n  t h e  i n t e r v a l  

Table 4.3.1 shows t h e  numer ica l  r e s u l t s  computed f o r  

(4.3.7) Uo = l n b  and 

f- 7% 

(4.3.8) Uo = L l n  1-d , 
2 

g iven  t h e  va lues  o f  1, a and x .  

Now l e t  U1 = U(+-) . 
transformed i n t o :  

W i t h  t h i s  a s s u m p t i o n ,  e q u a t i o n  ( 4 . 3 . 5 )  c a n  b e  

a long the  wide p a r t  o f  t he  s t r i p ,  o r  

(4.3.10) yk n 1 -a  

- 
- - + L l k E n - 2 ~  - 2kU1 4 k 2  - h E n - - = -  k+j 2kU1 t A 

k-h  IT N n k - h  

where A = 1 1 i?n - 4k2 - h en k-h k+h] . Hence n k2- h2 

n (4.3.1 1 ) "1 - - (Yk-A)  * 
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Finally,  the to ta l  resistance o f  the wide par t  of t he  s t r i p  i n  Figure 4.3.1 

n o t  connected t o  the narrow one i s  given by: 

and, since region I1 o f  Figure 4 . 2 . 1  i s  e x a c t l y  one h a l f  o f  t he  region i n  

Figure 4.3.1, (4.3.12) gives the t o t a l  resistance also for  region 11, w i t h  

- Rk the resis tance of only i t s  wide part and -- A - Uo the crowding 
2k  S 

resistance.  

We find: 

(4 .3 .13)  Rc = Crowding r e s i s t a n c e  = 

' 1  
2 kn k e n - -  h E n  B] - U, 2 2  k - h  

In par t icular  f o r  a < < l  we ge t :  

Table (4.3.1) i s  a comparison between exact and approximate values of  b o t h  R c  

and Uo. Figure (4.3.2) i l l u s t r a t e s  t h e  re la t ionship between RC , Uo and a 

for the exact and approximate cases. 

4 .  Remarks 

T h e  procedure descr ibed  i n  4 . 2  , 4 . 3  a l l o w s  us t o  compute t h e  

res is tance,  R S  , of the source region and to  express  the  su r face  p o t e n t i a l ,  

Os0 , a t  the source end of the channel as product of RS and I . In d o i n g  
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so we o b v i o u s l y  make an a p p r o x i m a t i o n ,  which i s  valid a t  l e a s t  as long a s  t h e  

charge-sheet model holds. We therefore  obtain 

(4.4.1) @so = RsI . 
A s imi la r  procedure a t  the drain gives 

( 4 . 4 2 )  V D s  - 4 s ~  = RDI 
where RD i s  the r e s i s t ance  of the drain region. 

We can now eliminate QSO and 4 s ~  from the e x p l i c i t  formula of I D  and 

we o b t a i n  an equation which def ines  ID impl ic i t ly .  

(4.4.3) ID = G(IDRs,IDRD,VGS,VBS, .....) . 

This may seem a b i g  s t ep  forward a t  f i r s t  glance,  b u t  we would l i ke  t o  r e c a l l  

t h a t  RS, RD contain the crowding resis tance based on the device geometry and 

s p e c i f i c a l l y  on k , the  r a t i o  between t h e  depth o f  the  channel and t h e  depth 

o f  the source and drain regions. Therefore k w i l l  u s u a l l y  be d i f f e r e n t  a t  

the two ends and k=O a t  t h e  d r a i n  end when t h e  p inch-of f  regime occur s .  

T h u s  the surface potent ia l  plays an  important r o l e  i n  determining the value of 

k .  Nevertheless i t  remains t h e  f a c t  t h a t  t h e  d o p i n g  c o n c e n t r a t i o n  of  t h e  

source (d ra in )  region and the crowding a t  t h e  two ends o f  t h e  channel  have 

made t h e i r  f i r s t  appearance i n  the d r a i n  current expression. 
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V. NUMERICAL RESULTS 

In sections 5.1 to 5.4, we will describe the numerical algorithms which 

the clinic used for the evaluation of surface potentials (os0 and q ~ ~ ~ )  

in the various models, followed by a numerical comparison, noting accuracy 

and efficiency. 
~ 

Section 5.5 gives some notes on the parameter extraction procedures. 

5.1 Exact Surface Potential 

It should be pointed out that all the models mentioned in this report 

calculate Oso and OSL from the same basic one-dimensional model. The 

‘exact solution’ is the one which uses the full 1-D equation in evaluating 

the surface potentials. The others use approximations to it. 

The equations to be solved are those of ch. 2.2, (see 2.2.10) namely 

5.1.1 

with F given by 7 ,  

and 

To obtain Os0 we solve 5.1.1 with 9, = os0 and On = OF - VBs. 
For oSL we use 9, = @SL and On = vD’j + OF - vBs’ 

Newton’s Method was used for the solution. 
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The Newton parts of the algorithms for $so and oSL are the same, 

so only the general case will be explained with $ = x. 
S 

The function whose zero we seek is 

5.1.4 G(x) = x - VGs + a F(x) . 

The derivative i s  given by 

5.1.5 

with H given by: 

5.1.6 

5.1.7 I 

Newton's algorithm, then, becomes: 

I 
The Fortran Statement Functions actually used are as follows: 

~ 5.1.9 F( x) = DSQRT( FSQ( x )  ) 

5.1.10 G(x) = x - VG + a F ( x )  

5.1.11 
x-VBS-$n+e"a) @( $F+VBs-x+%na 

-e 

In the function H, the ena term in each exponential is equivalent I 
1 to multiplying the expression by 

of the exponents is reduced, minimizing the risk of overflow. 

a .  By using this form, however, the size 



64 

The general form of the curve G(x) is given below in Figure 5.1.1. 

Figure 5.1.1 

The key to a successful algorithm based on Newton's Method is the initial 

guess for the zero. Which criteria should we use? 

It was found that Newton's Method could be made to always converge 

for the parameter ranges given in (6.3) under the following scheme. 

we are given some starting value, x. Then: 

Suppose 

5.1.12 i) Increment x by 0.25 until FSQ(x) > 0 

i i )  Increment x by 0.25 until G(x) > 0 

i i i )  Use Newton's Method. 

is generally positive +so The starting value for os0 was given as 0. 

but can be less than zero. Thus an initial value of 0 will normally converge 

faster since we do not need to step up through all the negative values. 

The starting value for os. was given as os0. Although the approxi- 
mation 4SL - - oso + VDs might seem natural, it is not practical. When 

I the drain is saturated, the approximation is very bad, and the starting 

value will be much too high. In this case, it is observed that Newton's 

algorithm will often converge to the wrong root - the left hand zero of G. 1 
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I f  t h e  bounds on t h e  parameter are changed s u b s t a n t i a l l y ,  t hen  t h e  

s u r f a c e  p o t e n t i a l  c a l c u l a t i o n s  shou ld  be checked over t h e  new range. 

e a s i e s t  way t o  do t h i s  i s  p robab ly  t o  make sure  t h a t  G ' ( x )  

a t  t h e  r o o t .  

The 

i s  p o s i t i v e  

I f - t h e  a l g o r i t h m  does f a i l  under d i f f e r e n t  parameter ranges, t h e r e  
I 

a r e  a f e w  t h i n g s  which can be changed be fore  t h e  need t o  pan ic  becomes 

apparent!  

F i r s t  y,  convergence o f  $so i s  b e t t e r  guaranteed i f  t h e  i n i t i a l  

i s  s e t  t o  VBs i n s t e a d  of 0. (Wi th  t h e  parameter bounds g iven i n  t h  

r e p o r t  (5 .5 )  convergence i s  guaranteed. ) 

guess 

S 

With  t h i s  change should a l s o  come t h e  f o l l o w i n g :  i n s t e a d  o f  inc rement ing  

x u n t i l  G ( x )  > 0, do i t  u n t i l  G ( x )  > 0 and G ' ( x )  > 0. Then i t  w i l l  

n o t  be p o s s i b l e  t o  s t a r t  c l o s e  t o  t h e  wrong r o o t .  

Another p o s s i b l e  reason f o r  convergence t o  t h e  wrong ( l e f t  hand) r o o t  

i s  if t h e  increment i n  x i s  t oo  l a r g e .  Thus use a s m a l l e r  increment i n  

s teps  i )  and i i )  o f  t h e  general  a lgo r i t hm.  

The checks and changes mentioned above a r e  n o t  i n c l u d e d  i n  t h e  para- 

meter e x t r a c t i o n  r o u t i n e s  as they  stand, s i n c e  t h e  a l g o r i t h m  always converges 

f o r  our p h y s i c a l  bounds on t h e  parameters. Each s o p h i s t i c a t i o n  c o s t s  t ime,  

and s ince  t h e  programs take  a good deal o f  t h a t  commodity a l ready ,  we have 

k e p t  ' e x t r a s '  t o  a minimum. 

5.2 Approximate Surface P o t e n t i a l  (Brews) 

The Brews Approximat ions amount t o  the f o l l o w i n g :  

r e p l a c e  t h e  f u n c t i o n s  i n  5.1.8 and 5 . 1 . 1 1  by 



5.2.1 

Then define the functions 5.1.9, 5.1.10, and the algorithm 5.1.12 is 

seen to converge. 

There is little point in using this algorithm for Brews' surface poten- 

tials in a program, however, since the precise solution requires virtually 

no extra effort and convergence is the same. 

A comparison of Brews' results to the precise solution is given in 

5.4. 

5.3 Approximate Surface Potential (Wiele) 

Van de Wiele's solutions f o r  surface potential at source and drain 

ends of the channel are extremely simple to calculate but unfortunately, 

not very accurate. A crucial first step is the determination of the in- 

version level associated to a particular surface potential. The condition 

nversion is given by the relations for strong 

5.3.1 

VGs >> VT and jointly 0, + VBs - oF < V1 
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and t h e  t h r e s h o l d  vo l tage,  VT, i s  g iven  r e c u r s i v e l y  by, 

5.3.2 

(see [ l l l e q n s .  (14), (13), ( 1 7 ) ) .  

A s imple l oop  i s  used t o  f i n d  t h e  th resho ld  v o l t a g e  f o r  each combinat ion 

o f  VGs and VBs. 

When t h e  r e l a t i v e  e r r o r  between consecut ive i t e r a t e d  va lues o f  

f a l l s  below i t  i s  assumed t o  have converged t o  i t s  l i m i t .  

i s  determined t h a t  a c o n d i t i o n  o f  s t r o n g  i n v e r s i o n  e x i s t s  then t h e  Van de 

Wie le s t r o n g  i n v e r s i o n  approx imat ion i s  used. 

c u r s i v e  one and g iven by 

VT 

I f  i t  

I 

Th i s  approx imat ion i s  a r e -  
I 

(See C l l l  eqn (9)). 
-6  Here again,  a r e l a t i v e  e r r o r  o f  l e s s  than 10 % between i t e r a t i o n s  i s  taken 

as p r o o f  o f  convergence. 

I I f  t h e  c o n d i t i o n s  f o r  s t r o n g  i n v e r s i o n  a re  n o t  met, t h e  weak i n v e r s i o n  

I approx imat ion i s  used. T h i s  i s  g iven  simply and nonrecu rs i ve l y  by I 

- 2 z 1  5.3.4 $sw - VGS + 3x - X ( $ A  +VJ . 

(See [ll] , eqn. (12) ) . 
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5.4 Comments (numerical comparison) 

As Van de Wiele uses the same formulae for  the surface potential a t  

the source and drain ends of the channel we may use the same approach f o r  

calculating e i the r  one. The only difference between source and d r a i n  end 

o f  the channel l i e s  i n  our  value fo r  4 . A t  the source end we take 

a F  - VBs 
de Wiele model has the advantage of being computationally d i r ec t ,  i n v o l v i n g  

I 
4, = I n 

I 
i 
1 
1 

whereas a t  the drain end we take  + n  = d F  - VBs + VDs. The Van 

limited logical checks and  only simple loops. Unfortunately, t h i s  simplicity 

i s  a t  the expense of accuracy. 

of parameters. For r u n  1 : X = 2.312, 4 = 4 ,  Cox = 6.9 x lo-*. For r u n  2: 

X = .4042, 4F = .35, Cox = 23x lom8. 4so and +sL were calculated t h r o u g h  

the following range of voltages: 

Two runs were made, each f o r  a d i f fe ren t  s e t  

F 

2 5 VGs 5 5 ,  VSS 0 and -2 2 VSS ? -5, 

1 5 VDS 5 5. 
I 

Each run compared the potent ia ls  calculated by the Brews and the Van de 

Wiele models w i t h  the potentials calculated by the exact, Pao-Sah model, for  

each possible s e t  of voltages, and expressed the difference i n  terms of a 

re la t ive  error .  4 s  

above VBs must be taken i n t o  account. T h u s  the expression f o r  r e l a t ive  

For the accurate measurement of e r ro r ,  the height of 

error  becomes: 100 X ($s (EXACT) - 9 ( A P P R O X ) ) / ( + s  (EXACT) - Ves) . 
5 

In the f i r s t  r u n ,  Brews' approximation yielded an RMS er ror  of .3% and 

.5% for +so and 4sL respectively. A t  no time d i d  the e r ror  r i s e  above .7%/1.6%. 

I The Van de Wiele approximation was not quite a s  good vielding an RFlS er ror  of 

1.4% and .2% with maximum errors  of 5.3%/1.2%. For the second r u n ,  Brews showed 

0% RMS er ror  i n  $so and +sL. There was only one instance of non zero error  

which was an insignif icant  .1%. 

1 
Van de Wiele returned. 1.1% and 3.9% RMS errors  
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w i t h  individual cases a s  high as 2.4% and  7.7%. 

poses of parameter extraction, the Brews approximation shows i t s e l f  to  be an  

excellent one w i t h  almost insignif icant  error.  

while not as  good, i s  s t i l l  reasonable for X = 2.312. However, for small x 
(X = .4042) errors  become noticeable and i t s  use becomes questionable. 

Clearly then f o r  the p u r -  

1 The Van de Wiele approximation, 

1 
1 5.5 Parameter Extractions 

The parameters used by l a s t  y e a r ' s  c l in ic  with the Brews model have been 

modified by the c l in i c .  

each contained two required q u a n t i  t i e s .  

Previously i t  was the case t h a t  2 of the parameters 

Namely 

P1 = Pl('F) 

5.5.1 p2 = PZ( 'FScox)  

P 5  = P5(W/L,COX) . 

Since bF, Cox, and  W/L are  the real quant i t ies  we wish to  f ind ,  we have 

s e t  the new parameters to be: 

- 
p2 - cox 5.5.2 

p5 = W/L . 

What bounds should be p u t  on the paramters? From physical considerations, 

we have the following: 

15 17 5.5.3 0.29 5 b F  5 0.41V corresponding t o  10 5 NA I 10 7 

-0i95zVFB 5 -0.8V fo r  n-channel , 

-0.3 5 V F B  c - -0.2V f o r  p-channel . 
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W and L a r e  given f o r  each device. Acceptable bounds f o r  W/L 

would be 10% to  e i ther  s ide  of the given value. 

For the Brews and Van de liiele models, the f u l l  one-dimensional solution 

f o r  surface potentials i s  used. 

mate solutions i n  the hope t h a t  they may be more computationally e f f i c i en t .  

A comparison of the various surface potential calculations was given i n  5 .4 .  

Also, we have coded Van de bfiele's approxi- 

I 



7 1  

6. CONCLUSIONS 

The new formulation of drain current given in  (3.4)  i s ,  we f e e l ,  more 

acceptable t h a n  those previously derived. If a n  approximation of xi  could 

be found i n  region A ,  then i t  would be complete. As i t  stands,  however, the 

importance of such a correction i s  n o t  known. 

comparing the approximations f o r  Qn with numerically computed values--this 

should also be done for  the Van de Wiele model. 

Tests should be carried o u t  

What i s  i t  a b o u t  t h i s  model which i s  more acceptable? 

F i r s t ly  i t  includes the contribution of current from the pinched off p a r t  

of the device which i s  not seen in any o f  the other models we have looked a t .  
I 

Secondly, in the Brews and Van de Wiele models, the r e s u l t  0, = K{p($,-VBS)-1)}2 

is  used for the depletion charge. 

model i n  region B, b u t  look a t  how they calculated this value. F i r s t l y ,  they 

assume tha t  a l l  the charge n o t  due to  electrons i s  d u e  d i rec t ly  t o  the doping, 

NA, and t h a t  the depleted region i s  uniform t o  a depth W ,  beyond which charge 

neut ra l i ty  ex i s t s .  T h u s  they solve the equation E~ d2+/dx = q PiA. I n  f a c t ,  

as  we go down into the bulk of  the device, the  hole charge, p ,  increases con- 

tinuously a n d  only asymptotically to the value NA, which gives charge neutra1it.y. 

The boundary conditions they use a t  the surface a re  those of the f u l l  1-D Poisson. 

Hence th i s  approach would seem t o  neglect the sharp increase i n  the actual 

potential near the surface caused by the inversion layer electron charge. 

This result i s  the same as the c l i n i c ' s  

2 

The 

approach for finding Q,,. 

ons t o  be continuous, and 

c l i n i c  has  not been able to  j u s t i f y  the use 

I n  our model we allow a l l  the charge d 

do n o t  lose the inversion layer s t ructure .  

of t h i s  

s t r  i b u t  
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3 regions 

What 

which a r e  

A as an 

A1 1 

Brews claims tha t  his model i s  valid i n  a l l  regimes of operation. Numeri- 

ca l ly ,  t h i s  i s  n o t w h a t  we f i n d .  

good f i t  to  wide ranges of d a t a .  

voltages which without f a i l  cause large errors. 

By using parameter extraction, we can get  a 

However, there a re  cer ta in  combinations of 

Plotably VGs = 2 ,  VBs = -3,-4,-5. 

The departure of the model from rea l i t y  i n  these conditions can be by 30 

or 40% compared to  less  t h a n  5% f o r  most a l l  the other voltages ( fo r  one given 

f i t  t o  da ta ) .  

trouble f i t t i n g t o  these par t icular  applied voltages. 

be t h a t  his model uses a s ingle  formula f o r  Qn whatever the operating condi- 

t i onsa t any  point in the device. The c l in ic ,  however, s p l i t s  the device i n t o  

I t  would thus seem reasonable to  assume t h a t  the model i s  h a v i n g  

The reason fo r  t h i s  may 

in each. 

testing of the various forms of On 

w i t h  d i f fe ren t  approximations 

thorough is  required now i s  a 

used in the two mode s ,  as we 1 as an  attempt to  f i n d  x i  i n  region 

ntegrable function. 

he models mentioned n this report a r e  based on the Pao-Sah formula- 

Typically, instead of integrating d i rec t ly  to  find t i o n  of drain current.  

Qn, the route using Qsc = Q n  + Q, is  taken. 

As has been noted previously, the Pao-Sah double integral  formula i s  found 

t o  be highly accurate f o r  long-channel MOSFETs. For short-channel devices, 

accuracy i s  not guaranteed. 

The main inaccuracy in this model i s  due to i t s  main feature:  namely the 

In order t o  do t h i s  integrat ion,  two assump- 
2 2 

integration of Poisson's equation. 

t ions a r e  needed: + = +,(y) and a +/ay2 << a +/ax2. The e f f ec t  of these 

assumptions i s  t o  make the model a combination of two uncoupled one-dimensional 

models , ra ther  t h a n  a t rue  two-dimensional model. 

n 
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What i s  needed now is t o  s t a r t  w i t h  a model based on Pao-Sah, and t o  

extend i t  to something which i s  "more two-dimensional". 

approach should be i n  the source-drain modeling. T h u s  4so and 4sL are  

no longer calculated from the one-dimensional Poisson, b u t  from f u l l  solutions 

t o  the source and d r a i n  equations. 

amount of work done i n  t h i s  area. 

most mathematically sound (yet  n o t  too  complex t o  be unworkable) and  presented 

them as a f u l l  and concise reference fo r  future  attempts t o  include source 

and d r a i n  e f fec ts  i n  a d r a i n  current model. 

P a r t  of t h i s  

The c l in ic  has analysed much of the large 

We have chosen the approaches which a re  

Along w i t h  th i s  approach, we need t o  add some y dependence to  the solu- 

t i o n  of Poisson's equation. This i s  par t icular ly  important a t  the source and  

d r a i n  where i r regular  device geometry and r a p i d  changes i n  c a r r i e r  concentra- 

t i ons  along the channel (e .g . ,  caused by pinch-off) can make the one-dimensional 

approximation very unrepresentative of t h e  t rue  s i tua t ion .  

A c lear  understanding of the t r icks  and  techniques used i n  one-dimensional 

model i ng i s  paramount before attempting the s tep  t o  quasi-two-dimensional i ty.  

The main achievement of t h i s  C l i n i c  i s  t h a t  we have c l a r i f i ed  the approaches 

commonly used in one-dimensional modeling, consolidated much of the large amount 

of work done on source and d r a i n  modeling, and possibly produced a n  opt imal  one- 

dimensional model for  MOSFET current. I n i t i a l l y ,  we had planned t o  produce a 

two-dimensional model, b u t  the lack of w h a t  we considered to  be a f u l l y  j u s t  

f ied  1-D formulation led us, instead, t o  concentrate on this,  t h u s  producing 

good basis f o r  future  mathematical modeling i n  t h i s  area. 

F o r  the computing, we have produced e f f i c i en t ,  accurate a 

solution of surface potent ia ls .  

extraction programs for  the Brews and Van de Wiele madels. 

These have been incorporated 

gorithms f o r  

n t o  parameter 

- 

a 

he 
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APPENDIX I 

NOTATION AND SYMBOLS 

The notation and symbols detailed below have been used exclusively 

throughout the report. 

Channel Length 

Effective channel length 

Width of the device 

Depth of the inversion region 

Depth of the depletion region 

E l  ectron mobi 1 i ty  

Effective el  ectron mo bi 1 i ty 

Oxide layer capacitance per u n i t  area 

In t r in s i c  Carrier Concentration 

Dopant i o n  concentration (acceptors) 

Charge density due t o  f ree  electrons in t h  

Total space charge density 

Depletion region charge 

i nversi 1 ayer 

y component of current density i n  the channel 

y component of electron current densit.y in the channel 

Carrier density of electrons 

Carrier densi t y  of holes 

The potential measured re la t ive  to  the source 

$I a t  x = 0 ,  the surface potential 

$s(0)  i . e . ,  surface potential a t  the source 
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%L 

+ P  

+F 

I 

€ S  

kox 

k 

T 

B 

I 

'D 

L B  

U 

%S 

'DS 

'GS 

'GB 

"FB 

tOX 

x 

4s(L) i . e . ,  surface potent ia l  a t  the dra in  

Electron quasi Fermi potent ia l  

Hole quasi Fermi potent ia l  

-1 NA 
i 

= p g n ( T ) ,  bulk Fermi potent ia l  

Permi t t iv i ty  of f r e e  space 

D i  e l e c t r i c  constant f o r  si 1 icon 

- 
- K E  s o  

Die lec t r i c  constant f o r  oxide 

Bo1 tzman constant 

Absolute temperature / O K  

= q / k T  

= ( c s i ( n i q p j j z :  I n t r i n s i c  Debye Length 
1 

= ( E S / r 4 , q P ) ) + :  Debye Length (bulk)  

= l/Tq NALB c, 

= 2ESqNA/Cox 

body b ias  r e l a t i v e  t o  the  source 

drain b ias  r e l a t i v e  t o  the  source 

gate  b ias  r e l a t i v e  t o  the  source l e s s  the f l a t  band vol tage,  VFB 

gate  b ias  r e l a t i v e  t o  the  body less 

Flatband voltage 

Thickness of the oxide layer 

= (ompC)-' where p 

conductivity 

VFB 

i s  contact r e s i s t i v i t y ,  am i s  material  
C 



76 

A P P E N D I X  11 

NOTATION AND SYMBOLS OF VARIOUS MODELS 

This section i s  a t ranslat ion fo r  changing expressions found in some of 

the papers we have used in to  the c l i n i c ' s  s t a n d a r d  notation. 

noted t h a t  the source t o  substrate  bias i s  zero in Pao-Sah [6] and Brews [ Z ] .  

Thus  i t  i s  only v a l i d  t o  s e t  

I t  should be 

VBs = 0 when comparing these t o  the other three 

papers. 

Clinic 

'BS 

vGS 

'DS 

0 

9 

4s 

9F 

+ n  + 'BS 

X 

Y 

Qsc 

QD 

Qn 

Pao-Sah [6] Van de Wiele [ l l ]  

'B - 'S 0 

U p  "G - "s - v~~ 

U,/ P 'D - 'S 

0 vc J 

U /  p + - vs 

US/@ +s  - vs 

U,/ B +F 

X X 

Y Y 

Qsc 

Q D  

Q N 

-- 

-- 

-- 

Brews [3] Brews [ Z ]  

-'BS 0 

vG 

'DS v D  

VG - VBs or VGs 

0 c! 

Y X 

X Y 

0, QS 

NI NI 
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